SRBAVG Products Validation/Status D. Doelling, D. Keyes, M. Nordeen,C. Nguyen, R. Raju, M. SunSSAI 8th CERES-II Science Team Meeting Victoria, BC, Canada, Nov 14-16, 2007 #### **Outline** - CERES Temporal Interpolation between measurements - Adding in geostationary fluxes with CERES TOA fluxes completes the diurnal signal in the radiation budget - The CERES-GEO product fluxes are of climate quality - CERES TOA gridded products - Review the globally gridded products - Order at http://eosweb.larc.nasa.gov/ under CERES - TOA annual mean global fluxes and net flux optimal closure - Archived products and production schedules - Calculation of the incoming solar - Polar fluxes very sensitive to Ephemeris #### Convert instantaneous measured flux to daily mean flux #### **Example: Peruvian stratus region** • Use geostationary 3-hourly derived albedos to resolve diurnal cycle Convert instantaneous measured flux to daily mean flux # Terra (10:30 LT) - Aqua (1:30 LT) monthly CERES SW flux differences Dec 2002 **CERES** only fluxes **CERES & GEO fluxes** - Terra fluxes > Aqua fluxes over marine stratus regions (morning clouds) - Aqua fluxes > Terra fluxes over land afternoon convection regions - The merged GEO fluxes have removed the CERES sampling bias of the diurnal cycle # nonGEO - GEO SW monthly mean Dec 2002 - nonGEO = CERES fluxes and ERBE (constant meteorology) temporal averaging - GEO = CERES fluxes utilizing GEO fluxes for temporal interpolation - Regional monthly differences can be > 20 Wm⁻² - Global bias is 1.0 Wm⁻² # Clear-sky TOA LW Flux June 2001, Terra FM-1, Arizona Desert - ERBE temporal interpolation linearly interpolates between measurements over oceans - Over land a half-sine fit is used to model diurnal heating if night time observations exist # GEO LW 16:30 (PM) - 7:30 (AM) monthly hourly mean Dec 2002 - For land: blue afternoon convection, red thermal lag - PM-AM differences can be ~ 30 Wm⁻² # nonGEO - GEO LW monthly mean Dec 2002 • On a global basis the LW diurnal signal is small # Using Geostationary Data for Temporal Interpolation of TOA Fluxes - 3-hourly imager data from geostationary satellites is used to define diurnal variations between CERES observations - Terra and Aqua sun-synchronous orbits limit diurnal sampling - Calibration is critical - GEO imagers calibration tied to MODIS, which is well calibrated - Cloud retrieval is a subset of CERES MODIS algorithm - Consistency between CERES and GEO clouds properties - GEO narrowband to broadband relationships use the same scene identification as the CERES ADMs - Final fluxes are regionally constrained to CERES observations - Maintain the CERES instrument calibration - No dependency with region, cloud amount, solar or view angle - No GEO artifacts or GEO induced trends over time # Change in Total-Sky TOA SW Flux due to artificial GEO calibration adjustments, July 2002 (IR+5%) - (IR-5%) (VIS+5%) - (VIS-5%) Bias=0.10%,rms=0.9% Bias=0.01%,rms=0.8% - Plotted differences are for 10% calibration change - Actual GEO SW calibration uncertainty is 3-5% and LW is 1-2% - GEO flux constrainment to CERES removes sensitivity to GEO calibration # Surface SW down Deseasonalized Trend March 2000 - February 2004 ISCCP GEO • CERES surface fluxes are parameterized from the CERES and GEO TOA fluxes, cloud properties and GEOS-4 profiles (ISCCP-like generation) using SOFA algorithms Plots from Laura Hinkelman # Surface SW down Deseasonalized Trend March 2000 - February 2004 ISCCP - GEO **GEO** - Unlike ISCCP, GEO fluxes are tied to the CERES TOA fluxes - No geostationary artifacts are imbedded in the GEO product # **CERES Monthly Gridded Products** - CERES products - Regional radiative fluxes and cloud properties at TOA, surface and profile levels - There are 4 main CERES product groups - ERBE-like - Uses ERBE algorithms to derive fluxes - SRBAVG Non-GEO - Uses the CERES ADMs and MODIS cloud properties to derive fluxes - SRBAVG GEO - · Adds geostationary fluxes to improve temporal sampling - SYN/AVG/ZAVG, Fred Rose presentation tomorrow at 8:30 - Produces global synoptic maps and radiative transfer fluxes - The CERES-Synoptic product fluxes are radiatively consistent with cloud properties #### **ERBE-like Product** - Product Features: - Based on ERBE algorithms and in the same format (ES-4 & ES-9) as the original ERBE scanner dataset (1985-1989) - Appropriate Usage: - To compare with historical ERBE (1985-1989) fluxes to ensure that flux differences are not associated with CERES algorithm improvements ### **SRBAVG nonGEO Product** - Product Features: - TOA fluxes and MODIS cloud properties • Fluxes and cloud properties are sampled only during Terra overpasses ### Aug 2002 Clear-sky Albedo - ERBElike = ERBE scene id, ERBE ADMs, ERBE temporal interpolation - nonGEO = MODIS scene id, CERES ADMs, ERBE temporal interpolation #### ERBE like - nonGEO - Note the clear-sky differences over maritime stratus, coastal and polar regions - The CERES ADMs and scene identification is an improvement over ERBE-like ### **SRBAVG GEO Product** - Product Features: - TOA and surface fluxes and MODIS/GEO cloud properties - Uses 3-hourly geostationary derived fluxes and cloud properties to interpolate between CERES observations The SRBAVG GEO product incorporates the diurnal cycle ### SYN/AVG/ZAVG Product Product Features: -Surface, TOA, and atmosphere Fu-Liou radiative transfer modeled fluxes consistent with CERES observed TOA fluxes and cloud properties MOA GEOS4 profiles SMOBA Ozone MODIS and MATCH aerosols Fu-Liou Radiative Transfer algorithm CERES/GEO fluxes MODIS/GEO clouds (Hourly input) LEVELS: surface, 500mb, 200mb, 70mb, TOA Conditions: pristine, clear-sky, all-sky (no aerosol), all-sky Tuned and untuned fluxes CERES SYN product 3-hourly synoptic fields CERES AVG product Monthly regional means CERES ZAVG product Monthly zonal & global means • SYN fluxes and cloud properties can be compared directly with climate model results at the 3-hourly or monthly level #### **5 Year Global Mean TOA Fluxes Mar00-Feb05** | Wm-2 | 1986-1988 | CERES Mar00 - Feb05 | | | |---------|-----------|---------------------|--------|-------| | All-Sky | ERBE | ERBE-like | nonGEO | GEO | | OLR | 236.3 | 239.0 | 237.7 | 237.1 | | SW | 101.1 | 98.3 | 96.6 | 97.7 | | NET | 4.9 | 4.0 | 7.0 | 6.5 | ADM improvement Diurnal improvement • Net imbalance within envelope of systematic errors (next slide) # Global Net Flux Balance Error Budget (out of 1365/ $4 = 341.25 Wm^{-2} = SW + LW$) | • | Error Source (yellow = heating) | | SW | LW | Net | |---|--|-------------|-------|--------------|--------------| | • | Solar Constant (1361 vs 1365) | | + 1.0 | 0.0 | + 1.0 | | • | Non-Spherical Earth (S ₀ /4.0045 not 4) | | | 0.0 | + 0.4 | | • | Absolute Calibration (2 sigma) | | | 2.0 | 4.0 | | • | Spectral Correction | | 0.5 | 0.3 | 0.6 | | • | Spatial Sampling | | < 0.1 | < 0.1 | < 0.1 | | • | Angle Sampling (ADMs) | + 0.2 | - 0.1 | + 0.1 | | | • | Time Sampling (diurnal) | < 0.2 | < 0.2 | < 0.2 | | | • | Reference Altitude (20km) | 0.1 | 0.2 | 0.3 | | | • | Near Terminator SW Flux | +0.3 to 0.5 | 0.0 | - 0.3 to 0.5 | | | • | Ocean Heat Storage | | | + | 0.4 to + 0.8 | | • | Expected Global Net Range: | | | | 1.5 to + 6.6 | | • | CERES SRBAVG Ed2D Rev 1 Global Net | | | + 6.4 | | • Will provide community with advice for optimal global "closure" # **Net Flux Optimal Global Closure** - Objective is to close the net flux imbalance by adjusting SW & LW TOA fluxes according to known uncertainties (previous slide). - The adjustment will also incorporate preliminary Edition3 instrument calibration improvements. - Apply TISA temporal interpolation to Norm's daily SSF database - Able to sidestep CERES production, process 5 years in 1 day - Compare with SRBAVG nonGEO fluxes - Multiple day or night satellite overpasses are summed in the daily database ### Database - nonGEO All-sky Timlines # Comparison of Geodetic and Geocentric (Elliptical - Spherical) Earth - Currently the CERES TISA Ed2 products assumes a spherical earth to derive the global from the zonal mean - The SFC grids the footprints in geodetic latitude - Both the solar incoming flux and area weighting are effected - The solar zenith angle is always slightly greater geodetically, there for the solar incoming should be smaller - Depends on the declination angle or julian day - The equator is weighted more geodetically - Will impact both the OLR and SW reflected - To derive the annual mean, need to weigh the monthly means by the number of days in the month - A simple 12 month average results in a 0.045 Wm-2 increase in the solar incoming flux # Comparison of Geodetic and Geocentric (Elliptical - Spherical) Earth #### Solar Incoming Difference #### **Zonal Weighting Difference** ter / Atmospheric Sciences # Comparison of Geodetic and Geocentric (Elliptical - Spherical) Earth All Sky Fluxes Clear-sky & Cloud Forcing Fluxes Annual Means | NASA | NASA Lang | |------|-----------| | | | | 60 month ave | SW | LW | NET | TSI | |---------------|-------|-------|-------|-------| | All-Sky | -0.18 | +0.05 | -0.16 | -0.30 | | Clear-Sky | -0.11 | +0.06 | -0.24 | | | Cloud Forcing | +0.07 | +0.01 | +0.07 | | ### **SRBAVG-Daily on Ed2E** - Separate the GEO and nonGEO flux and cloud parameters - SRBAVG-daily1 is the GEO (GEO & CERES) TOA, surface fluxes and clouds - SRBAVG-daily<u>2</u> is the nonGEO (CERES-only) TOA fluxes and MODIS clouds - SRBAVG-daily2: also includes the MODIS product aerosols - 0.65μm and 1.6μm (Ignatov aerosols) in SRBAVG1 product - Monthly zonal incoming solar flux - Daily Snow/Ice coverage maps (snow+ice+IGBP) - Make sure the average of the daily fluxes is equivalent to the SRBAVG monthly mean - Except nonGEO clear-sky LW, SRBAVG uses monthly half sine fit, whereas Daily will use daily half sine fits - Corrects the RAPS mode GGEO/CERES SW normalization error #### **ISCCP-D2-like** - GOAL: produce 9 GMT 3-hourly monthly mean cloud properties consistent with ISCCP D2 product format - Average cloud properties as a function of ISCCP cloud types based on cloud height and optical depth - User community already familiar with data format, to describe the dynamic state - MODIS-only derived from SSF, one daytime measurement (Terra 10:30AM, Aqua 1:30PM) - Multi-channel retrieval, 42 cloud types - GEO-only from 5 geostationary satellites, from 3-hourly images (60°N-60°S) - Daytime VIS and IR, and night time IR only retrievals, 9 cloud types - GGEO based on 4 cloud layers. Use gamma distribution to derive optical depth bins. ### **CERES Instaneous Gridded Data Products** | CERES PRODUCT | TRMM | Terra | Aqua | |---|--------------------------------|---|---| | ERBE-like ERBE gridded ES-8 fluxes | Ed2
Jan98-Aug98
& Mar00 | Ed1CV(Mar00-Aug07)
Ed2 (Mar00-Dec06) | Ed1CV (Jul02-Aug07)
Ed2 (Jul02-Dec06) | | SSF/SFC CERES local time gridded fluxes and cloud products from SSF | Ed2B
Jan98-Aug98
& Mar00 | Ed2C (Mar00-Jul06) Ed2F (May06-Dec06) MODIS Collection5 Dec 07 | Ed2A/B(Jul02-Apr06) Ed2C (May06-Dec06) MODIS Collection5 Dec 07 | | ISCCP-like-MODIS Pc-Tau GMT 3-hourly cloud statistics | | Ed2B/F(Mar00-Dec06) July 2008 After same as SSF | Ed2B/C(Jul02-Dec06) August 2008 After same as SSF | | CRS/FSW CERES GMT synoptic gridded fluxes from SSF and CRS | Ed2C
Jan98-Aug98
& Mar00 | Ed2C (Mar00-Dec05) | Ed2A/B(Jul02-Apr06) | | SYN SARB 3-hourly syntopic gridded parameters | | Beta3 (Mar00-Sep04) Beta4 (Mar00-Oct05) Seasonal months May 2008 Ed2C (Mar00-Dec05) November 2008 | Beta1 (Jul02-Oct05) Seasonal months Jun 2008 Ed2B (Jul02-Dec05) February 2009 | - Completed, Projected - Users must apply REV1 to all Ed2 SW fluxes, except SYN/AVG/ZAVG, procedure in DQS # **CERES Monthly Gridded Average Data Products** | CERES PRODUCT | TRMM | Terra | Aqua | |--|--------------------------------|---|--| | ERBE-like Monthly mean ERBE-like product, ES-4, ES-9 | Ed2
Jan98-Aug98
& Mar00 | Ed1CV(Mar00-Aug07)
Ed2 (Mar00-Dec06) | Ed1CV (Jul02-Aug07)
Ed2 (Jul02-Dec06) | | SRBAVG Monthly mean nonGEO and GEO products | Ed2B
Jan98-Aug98
& Mar00 | Ed2D (Mar00-Oct05)) Ed2E (Mar00-Dec05) includes daily July 2008 Ed2E/F (Jan06-Dec06) October 2008 | Ed2A (Jul02-Oct05) January 2008 Ed2B (Mar00-Dec05) includes daily July 2008 Ed2B/C(Jan06-Dec06) October 2008 | | ISCCP-like-GEO Pc-Tau GMT 3-hourly cloud statistics | 5 Geos | tationary Satellites Ed
November 2008 | 2A (Mar00-Dec06) | | AVG/ZAVG Monthly mean synoptic SARB product | | Beta3 (Mar00-Sep04) Beta4 (Mar00-Oct05) Seasonal months May 2008 Ed2C (Mar00-Dec05) November 2008 | Beta1 (Jul02-Oct05) Seasonal months Jun 2008 Ed2B (Jul02-Dec05) February 2009 | #### Completed, Projected - First look SSF and daily gridded CERES fluxes are available as FLASHFLUX - Available within 6 days of real-time, archive begins with March 2006 - Version SSF uses the same CERES ED2 routines using latest calibration and GEOS dataset - Beta TISA gridded product uses the nonGEO ED2 algorithm but combines Terra and Aqua - http://eosweb.larc.nasa.gov/PRODOCS/flashflux/table_flashflux.html #### **Conclusions** - Adding in geostationary fluxes with CERES fluxes completes the diurnal signal in the radiation budget - The CERES GEO product represents a major improvement over currently available global Earth energy budget datasets - Regional monthly mean fluxes can be greater than 20 Wm-2 from ERBE-like - The CERES-GEO product fluxes are of climate quality - GEO fluxes are constrained to CERES - No GEO artifacts or trends observed - The CERES-Synoptic product fluxes are radiatively consistent with cloud properties ### Comparison of Ephemeris datasets - Climate datasets do not have a standardized ephemeris dataset or solar constant - Should always normalize fluxes to the same incoming solar before comparing trends or differences in the SW fluxes - Especially true in polar regions - Compare the solar incoming difference from JPL De405 (reference) and the CERES EOSlib almanac - CERES TISA datasets (SFC, SRBAVG Ed2D) have their daily ephemeris based on 00 GMT instead of 12 - What is the impact? - SYN/AVG/ZAVG updates the ephemeris hourly - Will correct in SRBAVG Ed2E # Comparison of CERES - JPL De405 #### March Solar insolation zonal difference - CERES uses the CCSDS 301.0-B-2 (1994) almanac - CERES uses JPL De200 earth sun distance ## Comparison of CERES - JPL De405 Solar Insolation difference March Zonal difference 12 month zonal difference # Comparison of Ephemeris based on 00 - 12 GMT #### Earth-Sun distance (AU) #### GMT00-GMT12 Declination Angle - CERES TISA code in error - Daily Ephemeris based on GMT00 rather than GMT12 # Comparison of Solar Insolation of 00 - 12 GMT Ephemeris #### Annual Zonal Difference #### 12 month Zonal Difference • Seasonal difference variation between ±0.1 Wm-2 # Comparison of Solar Constant difference of 1367 and 1365 #### Annual Zonal Difference • Seasonal difference variation between 0.52 and 0.48 Wm-2 ## **Backup slides** ## Daily Dataset - nonGEO all-sky flux July 2002 ## **ISCCP 15 daytime cloud types** | Cloud top (mb) | | | | |---------------------|---------------|----------------|-----------------| | 50-440 | Cirrus | Cirrus-stratus | Deep Convective | | High | ice=13 | ice=14 | ice=15 | | 440-680 | Alto-cumulus | Alto-stratus | Nimbo-stratus | | Mid | liq=7, ice=10 | liq=8, ice=11 | liq=9, ice=12 | | 1000-680 | Cumulus | Strato-cumulus | Stratus | | Low | liq=1, ice=4 | liq=2, ice=5 | liq=3, ice=6 | | Cloud optical depth | 0.0-3.6 | 3.6-23 | 23-380 | | | Thin | Mid | Thick | ### **SRBAVG-ISCCPd2like parameters** | Cloud Parameter | MODIS-only | GEO-only | |------------------------|-------------------|-----------------| | Cloud Fraction | X | X | | Effective Pressure | X | X | | Effective | X | X | | Temperature | | | | Optical Depth | X | X | | Liquid/Ice Water | X | X | | Path | | | | Particle size (radius, | X | | | diameter) | | | | Infrared Emissivity | X | | | | | | | # of days/GMT box | X | X | ### SW GEO-CERES Ocean Biases for Jan 2001 • GEO Biases <3% as a function of cloud amount, SZA and VZA ## Summary of SRBAVG Ed 2D consistency checks | | SW | | LW | | |----------------------------|-----------------------|------|--------------|------| | (%) | Bias | RMS | Bias | RMS | | Terra-Aqua (instantaneous) | 0.3 to 0.7 | 15.0 | 0.2 to 0.7 | 4.6 | | (day/night) | | | -0.5 to -0.3 | 4.5 | | Terra-Aqua (monthly) | 1.0 | 4.2 | -0.3 | 0.9 | | Surface (monthly) | 3.2 | 11.3 | 0.0 | 3.1 | | SARB (instantaneous) | 3.5 | 14.4 | -0.6 | 5.1 | | GEO Calibration(monthly) | <0.1 | <1.0 | <0.1 | <1.0 | | 1 vs 3 hourly(monthly) | <0.1 | 2.5 | <0.1 | 0.4 | | EOF | No GEO artifacts | | | | | GEO directional | Consistent with CERES | | | | • All biases are < 1% or consistent with CERES fluxes (SW SARB and Surface) ### **TOA global 3-year flux means** | Jul02-Jun05 | ERBE-like | | nonGEO | | GEO | | |-------------|-----------|-------|--------|-------|-------|-------| | (Wm-2) | Terra | Aqua | Terra | Aqua | Terra | Aqua | | OLRtot | 239.0 | 239.6 | 237.7 | 238.1 | 237.2 | 237.9 | | SWtot | 97.9 | 96.0 | 96.6 | 95.1 | 97.6 | 96.4 | | NETtot | 4.4 | 5.7 | 7.1 | 8.2 | 6.6 | 7.0 | | OLRcs | 266.5 | 267.8 | 266.6 | 267.3 | 264.3 | 265.5 | | SWcs | 49.1 | 49.6 | 51.1 | 49.4 | 51.0 | 49.3 | | NETcs | 25.7 | 24.0 | 23.3 | 24.5 | 26.1 | 25.3 | | OLRcf | 27.5 | 28.2 | 28.9 | 29.2 | 27.2 | 27.6 | | SWcf | -48.8 | -46.6 | -45.5 | -45.7 | -46.6 | -47.1 | | NETcf | -21.3 | -18.2 | -16.6 | -16.5 | -19.4 | -19.4 | ### **TOA global 5-year flux means (Mar00-Feb05)** | | CERES | CERES | CERES | SRB | ISCCP | NCEP | GEOS4 | |------------------------------|-----------|---------|--------|-------|-------|---------|-------| | Wm-2 | ES-4 | SRBAVG | SRBAVG | GEWEX | FD | REANAL- | | | | ERBE-like | non-GEO | GEO | | | YSIS | | | OLR _{ALL-SKY} | 239.0 | 237.7 | 237.1 | 240.6 | 235.8 | 238.6 | 250.4 | | $SW_{ALL-SKY}$ | 98.3 | 96.6 | 97.7 | 101.2 | 105.2 | 117.2 | 92.4 | | NET _{ALL-SKY} | 4.0 | 7.0 | 6.5 | -2.5 | 0.5 | -11.6 | -1.0 | | OLR _{CLEAR-SKY} | 266.6 | 266.4 | 264.1 | 268.1 | 262.3 | 270.3 | 271.5 | | SW _{CLEAR-SKY} | 49.3 | 51.2 | 51.1 | 53.5 | 54.2 | 54.8 | 47.1 | | NET _{CLEAR-SKY} | 25.4 | 23.7 | 26.2 | 17.7 | 25.0 | 19.1 | 23.1 | | OLR _{CLOUD-FORCING} | 27.6 | 28.7 | 27.0 | 27.5 | 26.5 | 31.7 | 21.1 | | SW _{CLOUD-FORCING} | -49.0 | -45.4 | -46.6 | -47.7 | -51.0 | -62.4 | -45.3 | | NET _{CLOUD-FORCING} | -21.4 | -16.7 | -19.7 | -20.2 | -24.5 | -30.7 | -24.1 |